Phylogenetically mapping the evolution of the Zika virus as it spread across the world
During the first months of 2016, my research team and I started tracking the genetics of the Zika virus’ spread across the world using Nvector, a tool developed, and currently only in use in our laboratory at the Department of Bioinformatics and Computational Biology at the University of North Carolina, Charlotte. The combination of traditional phylogenetic tools and Nvector allowed us to rapidly perform phylogenetic analyses of the genomic differences and relationships of the Zika virus sequences generated by different research groups around the world, and project the generated phylogenetic trees onto a global map. This approach was pioneered by Daniel Janies, PhD, a Carol Grotnes Belk Distinguished Professor of Bioinformatics and Genomics at University of North Carolina at Charlotte, who had performed similar analyses during prior outbreaks of Middle East Respiratory Syndrome (MERS) and influenza A viruses. Phylogenetically mapping the evolution of the Zika virus as it spread across the world